(a) To define tachyphylaxis, tolerance, addiction, dependence & idiosyncrasy.

Tachyphylaxis = responsiveness to a drug dminishes **rapidly** after repeated administration, requiring higher doses to get same effect.

Tolerance = responsiveness to the same drug dose **gradually** decreases as a consequence of continued drug administration > 24hr. Can develop with drugs that do not cause dependence.

Addiction = a chronic state of physical or psychic dependence (adaptation & craving to avoid negative effects of withdrawal) on the effects of a drug beyond that required to achieve a recognised theraputic outcome.

- compulsion to self administer more than the recommended amount with excessive frequency outside the theraputc guidelines, despite detrimental consequences to the individual & society.

Dependence = the state of being dependent on a medication/drug. The physical parallel to acquired physical tolerance.

Idiosyncrasy = patient exhibiting an unusual drug response.

(b) To describe the mechanisms of tolerance

(1) change in receptors

- can be rapid in receptors directly coupled to ion channels.

- in NMJ slow conformational changes can take place in the receptor -> tight binding of the agonist without opening the ionic channel.

- phosphorylation of intracellular regions of receptor proteins -> ion channel desensitization (Beta receptors) -> interfers with its ability to activate second messenger cascade.

(2) loss of receptors

- prolonged exposure to agonists often results in a gradual decreases in the number of receptors expressed on the cell surface (down regulation

- receptors are taken into cell by endocytosis

(4) exhaustion of mediators

- ie. amphetamine use -> release of amines from nerve terminals -> depletion -> tachyphylaxis

(5) increased metabolic degradation

- ie. barbiturates & ethanol

- same doses -> induction of metabolic pathway -> progressively lower plasma concentration.

(6) physiological adaptation

- diminution of a drugs effect may occur because it is nullifed by a homeostatic response

- ie. BP lowering by thiazide diuretics limited by the activation of the renin-AG-ALD system.

(c) To describe alterations to drug response due to physiological change with special reference to neonates, the elderly & pregnancy.

Neonates

- there are a number of important enzymes important for drug metabolism: hepatic microsomal oxidase, glucuronyltransferase, acetyltransferase & plasma esterases.

- these have low activity in neonates -> take 8 weeks to develop
- kernicterus -> neonatal inability to conjugate bilirubin
- morphine not used in labour -> neonates can't conjugate it -> increased half-life.

Elderly

- no change in receptor responsiveness
- (1) decreased Q
- (2) enlarged fat compartment -> increase Vd -> increased duration
- (3) decreased protein binding
- (4) decreased renal function
- (5) decreased hepatic blood flow -> decreased delivery -> decreased metabolism
- (6) decreased ability to hepatically metabolise.

Pregnancy

Absorption

- little effect on gastric emptying & absorption from GI tract
- increased in MV & reduced FRC -> rapid uptake of inhalational agents.

Distribution

- TBW may increase 8L
- plasma volume increases by 20% (mid) & 50% (term)
- increased extravascular volume by 5L
- increased body fat by 4kg
- decreased plasma concentration of albumin
- -> increased Vd
- -> free drug fraction

Elimination

- induction of hepatic enzymes by progesterone
- oestrogen has opposite effect
- serum choline esterase decreases at by 25% at term (slower metabolism of sux)
- increased renal blood flow & GFR -> clearance increased.

(d) To describe the alterations in drug response due to pathological disturbance with special reference to cardiac, respiratory, renal & hepatic disease.

- cause important changes in PK & PD parameters

Cardiac

(1) decreased tissue perfusion -> redistribution of Q -> heart & brain -> smaller Vd & higher concentration in plasma.

(2) decreased perfusion of kidney & liver -> impair clearance by these organs.

(3) acute cardiac failure -> increase in alpha 1 acid glycoprotein -> increase binding of basic drugs (lignocaine, bupivocaine, fentanyl)

(4) increased sensitivity to CNS depressants

Respiratory

- important for metabolism of some drugs (fentanyl) -> prolong duration of action.

Renal

(1) decreased drug clearance - use the Cockroft-Gault equation

- (2) increased fluid volumes -> increased Vd
- (3) acid-base changes alter ionised fraction & protein binding.

(4) increased urea leads to osmotic changes

(5) electrolyte and haematological abnormalities.

Hepatic

(1) decreased intrinsic enzyme clearance -> predisposes to toxicity & increased duration of action

(2) portacaval shunting -> reduces hepatic blood flow.

- important from drugs with a high extraction ratio where clearance is a function of hepatic blood flow.

(3) decreased in plasma protein production -> decrease protein binding.

(4) decreased coagulation may affect drug Vd & binding.

(5) metabolites accumlate & compete for protein binding sites -> increased free drug concentration.

(6) in sepsis -> increased Vd from leaky capillaries -> increased dose for theraputic concentration.

(7) acidosis -> decrease affinity of catecholamines for their receptor -> ionotrope tolerance.

GI

- slowed drug absorption

Endocrine

- hyperthyroidism -> increased sensitivity to certain drugs (pethidine)

- changes in receptor function (ie. nephrogenic diabeters inspidous)

- changes in signal transduction (pseudohypoparathyroidism)

(e) To classify & describe adverse drug effects.

- polypharmacy allows the potential for drug interactions.

- prescibed drugs can also interact with dietary consitiutents & herbal or OTC medication.

3 mechanisms

(1) modification of the pharmacological effects of B without altering its concentration in the tissue fluid (PD interaction).

(2) alteration of the concentration of B that reaches its site of action (PK interaction)

(3) pharmaceutical incompatibility or interactions

- for these to occur it is necessary for the theraputic range of B to be narrow (small change in effect -> loss of efficacy or toxicity)

(1) PD interactions

- additive or synergestic effects when drugs administed (ie. fentanyl & morphine)
- agonist + antagonists -> NDNMBD + anticholinesterase (ie. roc & neostigmine)
- combined toxicity -> renal impairment (ie. frusemide + gentamycin + ACE inhibitors + NSAIDS)
- interactions due to alteration in fluids & electrolyte (ie. sux + digoxin -> VF)

(2) PK interactions

Absorption - one drug:

- has large surface area for absorption
- binds or chelates
- alters gastric pH
- alters GI motility

- ie. propanolol (weak base) decreases pulmonary uptake of fentanyl

Distribution

- competition for plasma proteins
- displacement from tissue binding sites

- ie. volatile increase distribution of NMBD

Metabolism

Induction of hepatic microsomal enzymes:

- barbiturates
- carbamazepine
- glucocorticoids
- rifampicin
- ethanol
- smoking
- phenytoin

Inhibition of hepatic microsomal enzymes:

- allopurinol
- chloramphenicol
- cimetidine
- cirpro
- clarithromycin
- haloperidol

- diltiazem
- erythromycin
- fluconazole, itraconazole, ketoconazole, miconazole
- isoniazid
- omeprazole
- sulphonamides
- verapamil
- esmolol, remifentanil, etomidate & atracurium compete for same plasma esterases.
- sux, mivacurium & procaine compete for plasma cholinesterase.

Elimination

- renal excretion of weak acids or bases -> may be influenced by drugs that alter urinary pH (change of ionisation & lipi solubility)

- some drugs decrease excretion of others (ie. probencid decrease excretion of penicillin)

(3) Pharmaceutical interactions

- mixing drugs with differing pH -> precipitation (barbiturates (acid) + opioid (base))
- warm, dry soda lime + enflurane, isoflurane & desflurane -> carbon monoxide in circle system.
- differing osmolarities -> blood & 5% dextrose = lysis of blood.

(f) To classify & describe the mechanisms of drug interaction

See above

(g) To explain the mechanisms & significance of pharmacogenetic disorders such as MH, porphyria, atypical cholinesterase and disturbance of cytochrome function.

ΜН

- incidence 1:5,000 -> 1:65,000 anaesthetics (suspected)
- mutation in the gene coding for the **ryanodine receptor**.
- autosomal dominant
- gene on chromosome 6
- thymidine instead of cytosine
- produces a cysteine for arginine substitution at position 615 of the receptor.
- pig model = soft exudative pig disorder

Triggers

- stress (in pigs)

- all volatile agents (except N2O)

- sux

-> these all either enhance Ca2+ influx or slowing its efflux.

- some may have tolerated the same agents previously

- rare in barbiturate-N2O-opiate-tranquiliser-non-depolarising muscle relaxant anaesthesia.

- sux potent trigger (first exposure)

- volatiles (median exposure till fulminant -> 3)

-> excess Ca2+ release during muscle contraction -> increased musle metabolism + heat production.

- prolonged and intensified interation between actin and myosin.

- enhanced aerobic metabolism -> lactic acidosis -> accumulation of intramitochondrial calicum -> deconjugation of oxidative phosphorylation -> cytolysis.

Clinically

- in lower north island trigger names = Harvey, Harwere & Cook

- history of Central Core Disease

- muscular dystrophy

(1) increased ETCO2

(2) tachycardia

(3) tachypnoea

(4) masseter spasm

(5) muscle rigidity

(6) temp increase (late) - 1 C\15min

- intra-op & 4\24 post op

- tachyarrhythmias
- difficulty ventilation
- hypertension
- sweating
- cardiac arrest

Investigations

- PaCO2 >60mmHg
- PvCO2 >90mmHg and increasing
- BE -5 and falling

- metabolic acidiosis
- CK >50,000 IU/L
- K+ increases
- Na+ increases
- myoglobinuria

Treatment

- call for help
- discontinue all anesthetic agents
- maintain anaesthesia with hypnotics and opioids.
- muscle relaxation with NDNMBD
- terminate surgery
- hyperventilate
- 100% O2
- cool (N/S stomach lavage)
- maintain urine output
- inotropes as needed
- HCO3 2-4mEq/kg
- Dantrolene 2.5mg/kg every 5min (total dose 10mg/kg/day continuous infusion or treat recrendences (25%))
- cardiac arrhythmias -> beta blockers & lignocaine.
- high K+ -> glucose-insulin & frusimide
- watch for DIC
- CK Q6hrly

Prognosis

- mortaility without dantrolene = 70%
- mortaility with dantrolene = 5%

Prophylactic treatment

- take history
- decrease anxiety with midazolam
- machine -> remove vapourisers, flush with O2 @ 10 L\min for 20min
- ETCO2 monitoring
- nasal temp probe
- dantrolene available

Dantrolene

Chemical

- hydrated 1-(((5-(4-nitrophenyl)-methylene)amino)-2,4-imidazolidinedione sodium salt)
- skeletal muscle relaxant

Uses:

- MH
- neuroleptic malignant syndrome
- spasticity
- ectasy intoxification

Structure - See diagram

Physiochemical:

- orange
- highly lipoliphillic (poor water solubility)
- in brown ampoules
- needs to be reconstituted in H2O
- has 3g of mannitol (increases solubility)
- 20mg in one amp (must be dissolved in 60mL of H20)
- final concentration = 0.33mg/mL
- pH 9.5
- needs to injected into large vein or fast running infusion.

Route - IV, PO

Dose - 2.5mg\kg to whenever responds

PΚ

Absorption

- bioavailability PO = 70%
- 2.4mg/kg -> blocks up to 75% of skeletal muscle contraction

Distribution

- because of poor water solubility total paralysis cannot be obtained
- levels remain therapeutic for 5 hrs
- Vd = 0.6L/kg

Metabolism

- hepatic

- by microsomes to 5-hydroxydantrolene = a skeletal muscle relaxant -> aminodantrolene -> reduced to acetylated derivative of dantrolene.

Excretion

- excreted in urine and bile

- elimination t1/2 = 12hr (adults), 10hr (children)

```
- clearance = 2mg/kg/min
```

PD

Main action - skeletal muscle relaxation

Mechanism of action

- depresses the intrinsic mechanisms of excitation-contraction coupling in skeletal muscle.

- ryanodine receptor = binding site

- exact mechanism unknown yet

- direct or indirect inhibition of the ryanodine receptor, the major Ca2+ release channel in sk muscle sarcoplasmic reticulum -> decreasing intracellular Ca2+ concentration.

- may act via the dihydropridine receptor to block electrical transmision to the ryanodine receptor.

Musculoskeletal

- weakness

```
CVS
```

```
- phlebitis
```

- no myocardial effects

RESP

- respiratory failure

CNS

- drowiness
- sleepiness
- confusion

GI

- dyspepsia
- N & V
- diarrhoea (PO)
- chronic liver dysfunction (PO)

New developments:

Azumolene

- 30 fold more H2O soluble
- equipotent

Porphyria

- drugs that increase the activity of enzymes proximal to a deficient enzyme in the haem biosynthetic pathway of porphyrins -> increase in the quantity of porphyrin precursors -> accumulation.

- (1) hepatic ALA-dehdratase deficiency autosomal recessive
- (2) hepatic HMB synthase (acute intermittent porphria) autosomal dominant
- (3) hepatic URO decarboxylase (porphyria cutanea tarda) autosomal dominant
- (4) COPRO oxdiase (hereditary coproporphyria) autosomal dominant
- (5) PROTO oxidase (variegate porphyria)
- (6) erythroid ALA synthetase x-linked sideroblastic anaemia
- (7) ferrochelatase (erythropoietic protoporphyria)

Drugs that increase the activities of enzymes prior to these deficiencies are:

- barbiturates
- chlordiazepoxides
- chlorproamide
- estrogens
- glutethimide
- griseofulvin
- meprobamate
- OCP
- phenytoin
- riampicin
- sulfonamide antibiotics
- Et-OH
- carbamazepine
- ergots

Classified into hepatic & erythropoietic depending on site of overproduction & accumulation of porphyrin precursor.

Hepatic

Symptoms are neurologic

- abdo pain
- neuropathy
- mental disturbance

Erythropoietic

Symptoms are cutanous photosensitivity

- excitiation of excess prophyrins in skin by long wave UV light -> cell damage -> scaring and deformation.

Diagnosis =

urinary metabolites:

- zeta-aminolevulinic acid (ALA)
- prophobilinogen (PBG)

definitively by genetics

Safe drugs to use:

- narcotics
- aspirin
- paracetamol
- phenothiazindes
- penicillins
- insulin
- atropine

Atypical cholinesterases

- plasma cholinesterase (pseudocholinesterase) = produced by liver and has no known function besides drug metabolism.

- ? helps body metabolize esters
- ? detoxification of plants
- all over body except at NMJ
- genetic polymorphism -> decreased availability or inhibition of cholinesterase.
- this can result in sux having a prolonged effect.

4 allelomorphic genes identified on chromosme 3 producing normal pseudocholinesterase.

(1) E1u (N)

- (2) E1a (D)
- (3) E1f (F)
- (4) E1s (S)

- Heterozyte (4% of population) -> sux acts for 20min (dibucaine number = 30-80)

- Homozygote (0.04% of population) -> sux acts for hours (dibucaine number = 20)

Dibucaine number

- = % inhibition of plasma cholinesterase by dibucaine (LA)
- normal = 80
- looks at activity of the enzyme
- the extent to which the enzyme can be inhibited
- mutations in these genes -> prolonged response to sux.
- total incidence = 1:2000

Causes of Decreased plasma cholinesterase

Decreased synthesis

- liver failure
- hereditry deficiency
- pregnancy
- neonates\elderly
- burns
- hypoproteinaemia
- malnutrition
- chronic or severe infections
- hypothyroidism

<u>Dilute it</u>

- heart failure
- pregnancy
- plasma pheresis

<u>Poison it</u>

- organophosphate poisoning
- ecothiopate
- cyclophosphamide
- phenelzine
- uraemia
- OCP
- bambuterol
- esmolol
- metclopramide
- MAOIs
- pancuronium

Other drugs metabolised by plasma cholinesterase

- aspirin
- ester LA
- sux
- probenacid
- mivacurium
- some Ach
- diamorphine
- -> not a life threatening emergency

Disturbances in cytochrome function

Cytochrome P450 isoenzymes:

- superfamily of haemoproteins that are the terminal oxidases of the mixed function oxidase system found on the membrane of the cytoplasmic reticulum.

- absorption peak on spectrophotometry 450nm when bond and reduced by CO.
- CYP450 = cytochrome P450
- last letters & numbers = designated family, individual enzyme & gene
- each consists of a single protein & a haem group as a prosthetic moiety.
- they are saturable
- they need co-factors to function

They catalyse reactions:

Phase I

- epoxidation
- N-dealkylation
- O-dealkylation
- S-oxidaiton
- hydroxylation of aliphatic & aromatic residues

Phase II

- conjugation with glucuronic acid

-> if CYP450 enzyme have defective gene origins then these reactions will be unable to be carried out -> build of substrates, prolonged action of substrate if are metabolically active or decreased/no potency if enzyme function required to change drug into an active form.

(h) To outline the management of MH with particular reference to the phamacology of dantrolene.

See above

(i) To describe immune mechanisms which may result in reactions to drugs, intravenous fluids & latex. To describe the management of anaphylactic & anaphylactoid reactions.

Hypersensitivity reaction = immune systems response to drug antigen produces tissue damage.

Four types

See diagram - types of hypersensitivity reactions

Type I - IMMEDIATE (ie. anaphylaxis)

- IgE bound antibody attached to a previously sensitised mast cell and basophil binds to antigen -> release of inflammatory mediators.

(1) increase vascular permeability & contraction of smooth muscle (histamine, platelet activating factor)

(2) chemotactic for other inflammatory cells (ECF-A, NCF, leukotriene B4)

(3) modulating the release of other mediators (BK-A, platelet activating factor)

Type II - CYTOTOXIC (ie. ABO incompatibility)

- when immunoglobulins bind to cell surface binding drug antigens.
- results in activation of complement lysis or phagocytosis.
- ie. halothane hepatits or ABO incompatibility

Type III - IMMUNE COMPLEX (ie. nephritis)

- precipitation of antigen-antibody complexes in target tissues.

- ie. glomerulonephritis, polyarteritis nodosa & RA.

Type IV - DELAYED (ie. latex allergy)

- extension of T lymphocyte response & interaction with macrophages that result in tissue damage.

- requires 24hr to reach maximal intensity

- ie. tuberculin skin test & contact dermatitis

Anaphylaxis

- type I hypersensitivity reaction
- occurs within minutes of exposure
- can be generalised or localised
- requires prior exposure
- severe & not related to dose (all or nothing)

Mediators

(1) histamine

- constrics GI tract & coronary smooth muscle
- bronchospasm
- increased vascualr permeability
- vasodilation via H1 receptor
- stimulation of gastric acid secretion

(2) 5-HT

- increased capillary permeability
- dilation of sk muscle capillaries
- vasoconstriciton else where
- platelet aggregation

(3) kinins

- smooth muscle contraction
- increased vascular permeability
- (4) leukotrienes
- prolonged bronchospasm
- (5) tissue prostglandins
- thromboxane -> contracts smooth muscle
- prostacyclin -> relaxes smooth muscle
- (6) platelet activating factor & chemotactic factor

Clinically

- most common offenders = sux, cephalosporins
- uriticarial rash

- swelling of soft tissues
- wheeze
- hypotension

Treatment

- stop all potential agents
- head down
- IVF
- big IV access
- adrenaline
- histamine antagonism (ranitidine)
- corticosteroids (hydrocortisone)
- 02
- ETT
- salbutamol

Anapylactoid reaction

- = release of mediators (histamine) from mast cells through non-immune mechanisms
- ie. morpine, pethidine, mivacurium & atracurium, synthetic colloids, midazolam.
- not mediated by IgE & doesn't not require prior sensitizations.
- less severe than anaphylaxis
- do a serum tryptase within 12 hrs
- manage in same way as anaphylaxis