• Twitter
  • Facebook
  • Vimeo
  • FCUS Courses
  • Register for FCUS Course
  • Login
Intensive Care Network
  • About Us
    • What is the ICN?
    • The ICN Story
  • Events
  • Podcast Series
    • ICN Activities
      • ICN Hot cases
      • Semantic sMatter
      • ECG Proving Ground
      • Echo Cases
      • SMACC 2013
      • ICU Radiology Cases
      • Game Changing Evidence
  • Regional Networks
    • SIN
    • BIN
  • Exams
    • Primary ANZCA
      • Pharmacology
      • Physiology
    • Primary ACEM
      • Pharmacology
      • Physiology
      • Pathology
      • Anatomy
    • Fellowship CICM
      • Notes
      • Past Papers
    • Fellowship Paeds
      • Approaches to Questions
      • Clinical Exam
      • Core ICU
      • Clinical Governance
      • Medicine
      • Surgery
    • Fellowship ANZCA
      • Notes
      • Past Papers with Answers
  • Resources
    • Links
    • The ICN meta feed
    • Reviews
      • Courses
      • Conferences
      • Websites & Blogs
      • Books & Journals
    • Clinical Resources
      • Clinical Calculators
    • Non-clinical resources
      • Research
  • Discussion Forum
    • Main Page

Raw Science 11: Pulmonary Perfusion

Home Raw Science 11: Pulmonary Perfusion

Raw Science 11

Pulmonary Perfusion

by Steve Morgan & Sophie Connolly

“The physiology of today is the medicine of tomorrow.” Ernest H. Starling, Physiologist (1926)

Welcome back to the Basic Science Clinic podcast on ICN. Post-hiatus we are ready to reinvigorate the examination of oxygen cascade physiology, from the prevailing atmosphere down to the only organelle that boasts its own bespoke genome, the mitochondrion. In the last podcast we decomposed the minutiae of passive respiratory gas diffusion across the alveolar capillary membrane. Prior to expounding the pre-eminence of V/Q ratios in determining gas exchange sufficiency, we need to publically vivisect the pulmonary circulation to bring you the belated Raw Science 11, Pulmonary Perfusion.

This detailed inspection of pulmonary perfusion is the longest podcast yet, no doubt we got slightly carried away, and thus we have broken it up into three more comfortably digested sections.

Section 1 will include the historical bit and both adult and fetal anatomy. Section 2 examines pulmonary haemodynamics and the integrated control of pulmonary vascular tone. Section 3 details the protean functions of the pulmonary endothelium and endothelial glycocalyx, the determinants of transvascular fluid flux in the lung, all with reference to the pathophysiology of acute lung injury.

The pulmonary circulation participates in gas exchange, blood filtration, metabolic regulation of endogenous vasoactive mediators, drug uptake, metabolism and excretion and the regulation of lung interstitial fluid homeostasis, a dexterous function devastated by the clinical syndrome of ARDS. Understanding the idiosyncracies of the pulmonary circuit is imperative for interpreting heart-lung interactions that influence V/Q distribution & gas exchange efficiency as well as overall cardiovascular performance, particularly during positive pressure ventilation in the context of concomitant shock states.

Factoids

In the average human the pulmonary circulation accommodates nearly 8000L of flowing blood per day, and even with a 500% increase in cardiac output during intense exercise, the pulmonary artery pressure will only undergo a 2-fold increase.

Nearly 90% of the inflated lung volume is air. The remaining 10% of lung volume is comprised of half lung tissue and half blood.

There is 70m2 of pulmonary capillary surface area with only 10m2 for the combined surface area of intra-pulmonary arterioles & venules.

Thank you to everyone for your feedback, we really appreciate it, whether deconstructive or affirmative. It helps us to improve what we are putting out there, and inspires us to keep at it. Get in touch with us via our twitter handles @Falconzao or @sophmconnolly, or message via ICN. We have a new e-mail address, , so send us your suggestions and corrections. Over the coming weeks we will be adding more key concept videos to our website basicscienceclinic.com, so look out for those.

Thanks for listening. Next up we will audit the physiological mechanisms of gas exchange, with a focus on ventilation-perfusion ratios. Until then.

the podcast

Subscribe to the ICN Podcast

Subscribe to the SMACC Podcast

Share this
The buffet of feeding trials is making me sick - Nepean 20/9/17Prof Lars Lundell talks to Doug Lynch. CICM x Jellybean No. 4 (Jellybean 74)
IPSN – Intensivist Parent Support Network WIN – Women in Intensive Care Network ICN UK ICN NZ ICN WA ICN VIC ICN NSW ICN QLD The ICN Story The Team Jellybean Podcasts ICN Blog SMACC Video SMACC Audio Video ECG Simulator by aclsmedicaltraining BASIC SCIENCE CLINIC Simulation Game Changing Evidence ICU Radiology Echo Guide ECHO Cases Clinical Cases EXAMHELP Jellybean Podcasts ICN Blog SMACC Video SMACC Audio Video CICM Fellowship ANZCA FELLOWSHIP PAEDS FELLOWSHIP EMERGENCY PRIMARY ANAESTHETICS PRIMARY End-o-bed-o-gram

  • About
    •  What is ICN
    •  The Team
    •  ICN NSW
    •  ICN QLD
    •  ICN VIC
    •  ICN WA
    •  ICN NZ
    •  ICN UK
  • Resources
    •  Lung US
    •  Exam Help
    •  Clinical Cases
    •  Echo Cases
    •  Echo Guide
    •  ICU Radiology
    •  Game Changing Evidence
    •  ICN Metafeed
    •  Simulation Resouces
  • Media
    •  SMACC Posters
    •  Audio
    •  Video
    •  Pecha Kuchas
  • Upskill
    •  Clinical Cases
    •  Echo Cases
    •  ICU Radiology
  • Exam Help
    •  End-o-Bed-o-Gram
    •  ICU Primary Exam
    •  CICM Fellowship
    •  ANZCA Fellowship
    •  Paeds Fellowship
    •  Emergency Primary
    •  Anaesthetics Primary

® 2025 The Intensive Care Network || All rights reserved || Disclaimer || Site Map || Contact ICN Support

Log in with your credentials

or     Create an account

Lost your password?

Forgot your details?

I remember my details

Create Account